Experimental Injection Could Reverse Spinal Cord Injuries

By Pat Anson, PNN Editor

An experimental injection therapy that uses synthetic nanofibers to stimulate nerve cells could be used someday to reverse paralysis and repair damaged spinal cord tissues, according to a new study by researchers at Northwestern University.

In experiments on laboratory animals, the therapy successfully regenerated spinal cord nerves, reduced scar tissue and triggered the formation of new blood vessels. After a single injection, paralyzed mice regained the ability to walk within four weeks.

“Our research aims to find a therapy that can prevent individuals from becoming paralyzed after major trauma or disease,” said lead author Samuel Stupp, PhD, an expert in regenerative medicine and founding director of the Simpson Querrey Institute for BioNanotechnology (SQI) at Northwestern.

“For decades, this has remained a major challenge for scientists because our body’s central nervous system, which includes the brain and spinal cord, does not have any significant capacity to repair itself after injury or after the onset of a degenerative disease. We are going straight to the FDA to start the process of getting this new therapy approved for use in human patients, who currently have very few treatment options.”

Stupp and his colleagues used nanotechnology to develop synthetic nanofibers that mimic the natural environment around the spinal cord. Intensifying the motion of molecules within the nanofibers promotes the repair and regeneration of myelin, the insulating layer of axons that help nerve cells transmit electrical signals.

Researchers say the nanofibers biodegrade into nutrients for nerve cells within 12 weeks and completely disappear from the body without noticeable side effects. Their study, published in the journal Science, is the first in which researchers controlled the motion of molecules through changes in chemical structure to increase a therapy’s efficacy.

Nearly 300,000 people are currently living with a spinal cord injury in the United States. About 30% are hospitalized at least once a year after the initial injury and less than 3% of those with a severe injury ever recover basic physical functions. Life expectancy for patients with spinal cord injuries is significantly lower than healthy people and has not improved since the 1980s.

“Currently, there are no therapeutics that trigger spinal cord regeneration,” Stupp said in a news release. “I wanted to make a difference on the outcomes of spinal cord injury and to tackle this problem, given the tremendous impact it could have on the lives of patients.” 

The key behind Stupp’s breakthrough therapy is fine tuning the motion of molecules so that they can find and constantly engage with moving cellular receptors with bioactive signals. Injected as a liquid, the “dancing molecules” immediately form a gel in a complex network of nanofibers that mimic the extracellular matrix of the spinal cord.

“Receptors in neurons and other cells constantly move around,” Stupp said. “The key innovation in our research, which has never been done before, is to control the collective motion of more than 100,000 molecules within our nanofibers. By making the molecules move, ‘dance’ or even leap temporarily out of these structures, known as supramolecular polymers, they are able to connect more effectively with receptors.”

Stupp and his team found that fine-tuning the molecules’ motion within the nanofibers makes them more agile and results in greater therapeutic effect in paralyzed mice. They also confirmed that formulations of their therapy performed successfully in vitro tests with human cells, indicating increased bioactivity and cellular signaling.

Once connected to the nerve receptors, the dancing molecules trigger two cascading signals, both of which are critical to spinal cord repair. One signal induces myelin to rebuild around axons, which improves how nerve cells communicate with the brain. The second signal helps neurons survive after injury by promoting the regrowth of lost blood vessels that feed neurons and other cells for tissue repair. The therapy also reduces glial scarring, which acts as a physical barrier that prevents the spinal cord from healing. 

“The signals used in the study mimic the natural proteins that are needed to induce the desired biological responses. However, proteins have extremely short half-lives and are expensive to produce,” said first author Zaida Álvarez, a former research assistant in Stupp’s laboratory who is now a researcher scholar at SQI. “Our synthetic signals are short, modified peptides that — when bonded together by the thousands — will survive for weeks to deliver bioactivity. The end result is a therapy that is less expensive to produce and lasts much longer.”

While the new therapy could be used to treat paralysis after a major spinal cord injury, Stupp believes it could also be used to as a therapy for neurodegenerative diseases and strokes.

“The central nervous system tissues we have successfully regenerated in the injured spinal cord are similar to those in the brain affected by stroke and neurodegenerative diseases, such as ALS, Parkinson’s disease and Alzheimer’s disease,” Stupp said. “Beyond that, our fundamental discovery about controlling the motion of molecular assemblies to enhance cell signaling could be applied universally across biomedical targets.”

You can learn more about Stupp’s research in this podcast and by watching this video:

Recent research at Yale University and Sapporo Medical University in Japan found that injections of mesenchymal stem cells (MSCs) in patients paralyzed by spinal cord injuries led to significant improvement in their motor functions. In a small study, more than half of the paralyzed patients showed substantial improvements in function within weeks of being injected with autologous MSCs derived from their own bone marrow.

Stem Cells Restore Function in Patients Paralyzed by Spinal Cord Injuries

By Pat Anson, PNN Editor

Intravenous injection of mesenchymal stem cells (MSCs) in patients paralyzed by spinal cord injuries led to significant improvement in their motor functions, according to a team of researchers at Yale University and Sapporo Medical University in Japan.

The study findings, published in the Journal of Clinical Neurology and Neurosurgery, focused on 13 patients who suffered spinal cord injuries (SCIs) after falls or trauma. Some lost the ability to use their arms and legs, while others suffered coordination and sensory loss, or experienced bowel and bladder dysfunction.

For more than half of the patients, substantial improvements in motor function were observed within weeks of being injected with autologous MSCs derived from their own bone marrow. Although this was a small observational Phase 2 study, researchers are excited by the findings.

"The idea that we may be able to restore function after injury to the brain and spinal cord using the patient's own stem cells has intrigued us for years," said senior author Stephen Waxman, MD, a professor of neurology, neuroscience and pharmacology at Yale. "Now we have a hint, in humans, that it may be possible."

One of the patients profiled was a 34-year-old man who was left partially paralyzed and bedridden after a fall. He received an intravenous injection of MSCs 47 days after his injury. Two weeks after the infusion, voluntary movement was restored to his lower extremities and he was walking with the support of a walker.

In another case, a 47-year-old man left bedridden after a diving accident showed rapid improvement after a stem cell infusion. He was able to drive a wheelchair the next day, walk and climb stairs after two weeks, and eat independently after eight weeks.

Other patients paralyzed after similar injuries were able to breath again without assistance, regain control of their bowel functions, and perform independent living tasks such as dressing and grooming.

“Although this initial case study was unblinded and uncontrolled, the SCI patients appeared to demonstrate a tendency of relatively rapid improvement of neurological function that was often apparent within a few days following infusion of MSCs,” researchers said.

“We would emphasize that this case series describes an early study on a small number of patients. In addition to being unblinded and uncontrolled, this study has a number of limitations. We cannot rule out observer bias nor a contribution of surgical intervention to recovery in cases where this intervention occurred, or spontaneous recovery.”

Other case studies have also shown that stem cells can restore motor and sensory function in patients paralyzed by spinal cord injuries.

The Mayo Clinic reported in 2019 that a California man paralyzed from the neck down in a surfing accident was able to walk again after being injected with his own stem cells. Researchers emphasized the man was a “super-responder” and that other paralyzed patients injected with stem cells don’t have such a dramatic recovery.

According to the National Spinal Cord Injury Statistical Center, over 17,000 Americans suffer spinal cord injuries each year. Chronic pain is a serious problem that can result from SCI, affecting about two-thirds of patients, with one out of three reporting their pain as severe.

New Drug Could Improve Effectiveness of Stem Cell Therapy

By Pat Anson, PNN Editor

Scientists have developed an experimental drug that can lure stem cells to damaged tissues and help them heal -- a discovery being touted as a major advancement in the field of regenerative medicine.

The findings, recently published in the Proceedings of the National Academy of Sciences (PNAS), could improve the effectiveness of stem cell therapy in treating spinal cord injuries, stroke, amyotrophic lateral sclerosis (ALS), Parkinson’s disease and other neurodegenerative disorders. It could also expand the use of stem cells to treat conditions such as heart disease and arthritis. 

“The ability to instruct a stem cell where to go in the body or to a particular region of a given organ is the Holy Grail for regenerative medicine,” said lead author Evan Snyder, MD, director of the Center for Stem Cells & Regenerative Medicine at Sanford Burnham Prebys Medical Discovery Institute in La Jolla, CA. “Now, for the first time ever, we can direct a stem cell to a desired location and focus its therapeutic impact.”

Over a decade ago, Snyder and his colleagues discovered that stem cells are drawn to inflammation -- a biological “fire alarm” that signals tissue damage has occurred. However, using inflammation as a therapeutic lure for stem cells wasn’t advisable because they could further inflame diseased or damaged organs, joints and other tissue.

To get around that problem, scientists modified CXCL12 -- an inflammatory molecule that Snyder’s team discovered could guide stem cells to sites in need of repair— to create a drug called SDV1a. The new drug works by enhancing stem cell binding, while minimizing inflammatory signals.

“Since inflammation can be dangerous, we modified CXCL12 by stripping away the risky bit and maximizing the good bit,” Snyder explained. “Now we have a drug that draws stem cells to a region of pathology, but without creating or worsening unwanted inflammation.”

To demonstrate its effectiveness, Snyder’s team injected SDV1a and human neural stem cells into the brains of mice with a neurodegenerative disease called Sandhoff disease. The experiment showed that the drug helped stem cells migrate and perform healing functions, which included extending lifespan, delaying symptom onset, and preserving motor function for much longer than mice that didn’t receive the drug. Importantly, the stem cells also did not worsen the inflammation.

Researchers are now testing SDV1a’s ability to improve stem cell therapy in a mouse model of ALS, also known as Lou Gehrig’s disease, which is caused by a progressive loss of motor neurons in the brain. Previous studies conducted by Snyder’s team found that broadening the spread of neural stem cells helps more motor neurons survive — so they are hopeful that SDV1a will improve the effectiveness of neuroprotective stem cells and help slow the onset and progression of ALS. 

“We are optimistic that this drug’s mechanism of action may potentially benefit a variety of neurodegenerative disorders, as well as non-neurological conditions such as heart disease, arthritis and even brain cancer,” says Snyder. “Interestingly, because CXCL12 and its receptor are implicated in the cytokine storm that characterizes severe COVID-19, some of our insights into how to selectively inhibit inflammation without suppressing other normal processes may be useful in that arena as well.”

Snyder’s research is supported by the National Institutes of Health, U.S. Department of Defense, National Tay-Sachs & Allied Disease Foundation, Children’s Neurobiological Solutions Foundation, and the California Institute for Regenerative Medicine (CIRM).

“Thanks to decades of investment in stem cell science, we are making tremendous progress in our understanding of how these cells work and how they can be harnessed to help reverse injury or disease,” says Maria Millan, MD, president and CEO of CIRM. “This drug could help speed the development of stem cell treatments for spinal cord injury, Alzheimer’s, heart disease and many other conditions for which no effective treatment exists.”